www.5615.net > 求导公式大全

求导公式大全

1.y=c(c为常数) y'=0 2.y=x的n次方 y'=nx的(n-1)次方 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax (底数为 a,真数为x) y'=(logae)/x (底数为 a,真数为e)y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 以下

1.y=c(c为常数) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/sin^2x 9.y=arcsinx y'=1/

.常用导数公式 1.y=c(c为常数) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x

y=x^n, y'=nx^(n-1)y=a^x, y'=a^xlnay=e^x, y'=e^xy=log(a)x ,y'=1/x lnay=lnx y'=1/xy=sinx y'=cosxy=cosx y'=-sinxy=tanx y'=1/cosxy=cotanx y'=-1/sinxy=arcsinx y'=1/√(1-x)y=arcco

十六个基本导数公式如下(y:原函数;y':导函数):1、y=c,y'=0(c为常数)2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0).3、y=a^x,y'=a^x lna;y=e^x,y'=e^x.4、y=logax, y'=1/(xlna)(a>0且 a≠1);y=lnx,y'=1/x.5、y=sinx,y'=cosx.6、y=cosx,y'=-sinx.7、y

基本初等函数的导数公式:1 .C'=0(C为常数);2 .(Xn)'=nX(n-1) (n∈Q);3 .(sinX)'=cosX;4 .(cosX)'=-sinX;5 .(aX)'=aXIna (ln为自然对数)特别地,(ex)'=ex6 .(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1)特别地,(ln x)'=1/x7 .(tanX)'=1/(cosX)2=(secX)28 .

1. y=c y'=0 2. y=α^μ y'=μα^(μ-1) 3. y=a^x y'=a^x lna y=e^x y'=e^x 4. y=loga,x y'=loga,e/x y=lnx y'=1/x 5. y=sinx y'=cosx 6. y=cosx y'=-sinx 7. y=tanx y'=(secx)^2=1/(cosx)^2 8. y=cotx y'=-(cscx)^2=-1/(sinx)^2 9. y=arcsinx y'=1/√(1-x^2) 10.y=arccosx y'=-1/√(

① C'=0(C为常数函数); ② (x^n)'= nx^(n-1) (n∈Q); ③ (sinx)' = cosx; ④ (cosx)' = - sinx; ⑤ (e^x)' = e^x; ⑥ (a^x)' = a^xlna (ln为自然对数) ⑦ (Inx)' = 1/x(ln为自然对数) ⑧ (logax)' =(xlna)^(-1),(a>0且a不等于1)

导数公式如下: 扩展资料:注意:du1、f'(x)<0是f(x)为减函数的充分不必要条件,zhi不是充要条件.2、导数为零dao的点不一定是极值点.当函数为常值函数,没有增减性,即没内有极值点.但导数为零.(导数为零的点称之为驻点,如果驻点两侧的导数的符号相反,则该点为极值点,否容则为一般的驻点.

基本初等函数导数公式主要有以下 y=f(x)=c (c为常数),则f'(x)=0 f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosx f(x)=cosx f'(x)=-sinx f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0) f(x)=e^x f'(x)=e^x f(x)=logaX f'(x)=1/xlna (a>0且a不

网站地图

All rights reserved Powered by www.5615.net

copyright ©right 2010-2021。
www.5615.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com